nonexistence of two circulant weighing matrices of weight 81

نویسندگان

k. t. arasu

kyle bayes

ali nabavi

چکیده

‎in this paper‎, ‎we prove the nonexistence of two weighing matrices of‎ ‎weight 81‎, ‎namely $cw(88,81)$ and $cw(99,81)$‎. ‎we will apply two‎ ‎very different methods to do so; for the case of $cw(88,81)$‎, ‎we‎  ‎will use almost purely counting methods‎, ‎while for $cw(99,81)$‎, ‎we‎ ‎will use algebraic methods‎.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On circulant and two-circulant weighing matrices

We employ theoretical and computational techniques to construct new weighing matrices constructed from two circulants. In particular, we construct W (148, 144), W (152, 144), W (156, 144) which are listed as open in the second edition of the Handbook of Combinatorial Designs. We also fill a missing entry in Strassler’s table with answer ”YES”, by constructing a circulant weighing matrix of orde...

متن کامل

On circulant weighing matrices

Algebraic techniques are employed to obtain necessary conditions for the existence of certain circulant weighing matrices. As an application we rule out the existence of many circulant weighing matrices. We study orders n = 8 +8+1, for 10 ~ 8 ~ 25. These orders correspond to the number of points in a projective plane of order 8.

متن کامل

Finiteness of circulant weighing matrices of fixed weight

Let n be any fixed positive integer. Every circulant weighing matrix of weight n arises from what we call an irreducible orthogonal family of weight n. We show that the number of irreducible orthogonal families of weight n is finite and thus obtain a finite algorithm for classifying all circulant weighing matrices of weight n. We also show that, for every odd prime power q, there are at most fi...

متن کامل

New weighing matrices constructed from two circulant submatrices

A number of new weighing matrices constructed from two circulants and via a direct sum construction are presented, thus resolving several open cases for weighing matrices as these are listed in the second edition of the Handbook of Combinatorial Designs.

متن کامل

Some New Results on Circulant Weighing Matrices

We obtain a few structural theorems for circulant weighing matrices whose weight is the square of a prime number. Our results provide new schemes to search for these objects. We also establish the existence status of several previously open cases of circulant weighing matrices. More specifically we show their nonexistence for the parameter pairs (n, k) (here n is the order of the matrix and k i...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
transactions on combinatorics

ناشر: university of isfahan

ISSN 2251-8657

دوره 4

شماره 3 2015

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023